US009262799B2

a2z United States Patent (10) Patent No.: US 9,262,799 B2
Liao (45) Date of Patent: Feb. 16, 2016
(54) SHARED MEMORY EIGENSOLVER (56) References Cited

(71) Applicant: Silicon Graphics International Corp., U.S. PATENT DOCUMENTS

Milpitas, CA (US)

2006/0077091 Al* 4/2006 Wu ... GO1S 13/88
342/25C
(72) Inventor: Cheng Liao, Pleasanton, CA (US) 2012/0139926 Al* 6/2012 Clohset GO6T 15/005
345/502
(73) Assignee: Silicon Graphics International Corp., OTHER PUBLICATIONS

Milpitas, CA (US)

Ballard et al., “Communication Avoiding Symmetric Band Reduc-

(*) Notice: Subject to any disclaimer, the term of this tion,” Principles and Practice of Parallel Programming, 10 pages
patent is extended or adjusted under 35 (Feb. 25, 2012).
U.S.C. 154(b) by O days. Bischof et al., “The SBR Toolbox—Software for Successive Band
Reduction,” ACM Transactions on Mathematical Software, 16 pages
(21) Appl. No.: 14/536,477 (1996).))
Haidar et al., “Parallel Reduction to Condensed Forms for Symmetric
(22) Filed: Nov. 7. 2014 Eigenvalue Problems using Aggregated Fine-Grained and Memory-
: .,

Aware Kernels,” International Conference for High Performance
Computing, Networking, Storage and Analysis, 11 pages (Nov. 14,
(65) Prior Publication Data 20111))' £ £ £ 4 pages (
Ltaief et al., “Solving the Generalized Symmetric Eigenvalue Prob-
US 2015/0130825 Al May 14, 2015 lem using Tile Algorithms on Multicore Architectures,” Advances in
Parallel Computing, vol. 22, pp. 397-404 (2012).
Luszczek et al., “Two-Stage Tridiagonal Reduction for Dense Sym-
Related U.S. Application Data metric Matrices using Tile Algorithms on Multicore Architectures,”
o o International Parallel & Distributed Processing Symposium, 14
(60) Provisional application No. 61/901,731, filed on Now. pages (May 16, 2011).

8, 2013. Petschow et al., “MR3-SMP: A Symmetric Tridiagonal Eigensolver
for Multi-core Architectures,” Parallel Computing, vol. 37, pp. 795-

(51) Int.Cl. 805 (Dec. 2011).

GOGF 15/80 (2006.01) (Continued)

GO6F 15/16 (2006.01)

GO6T 1/60 (2006.01) Primary Examiner — Jacinta M Crawford

GOG6F 17/16 (2006.01) (74) Attorney, Agent, or Firm — Sunstein Kann Murphy &

GO6F 12/08 (2006.01) Timbers LLP

GO6F 9/54 (2006.01)
(52) U.S.CL (57) ABSTRACT

CPC . GO6T 1/60 (2013.01); GOGF 9/544 (2013.01); A method for computing eigenvectors and eigenvalues of a

GO6F 12/08 (2013.01); GOGF 17/16 (2013.01); square matrix in a high performance computer involves
GOG6F 2212/2542 (2013.01) dynamically reallocating the computer’s computing cores for

(58) Field of Classification Search various phases of the computation process.
None
See application file for complete search history. 9 Claims, 18 Drawing Sheets

Reduce dense input matrix to band form
410

v

Reduce band matrix to tridiagonal form
420

v

Compute eigenvectors and eigenvalues of tridiagonal matrix
430

v

Transform eigenvectors to the banded reference system
440

v

Transform eigenvectors to the dense reference system
450

US 9,262,799 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Ribeiro et al., “Memory Access Characterization of OpenMP
Workloads on a Multi-core NUMA Machine,” Institut National de
Recherche en Informatique et en Automatique, 29 pages (Jun. 2010).

Univ. of Tennessee “Plasma Readme,” icl.cs.utk.edu/projectsfiles/
plasma/html/README html, 7 pages (Jul. 4, 2013).

International Searching Authority International Search Report—In-
ternational Application No. PCT/US2014/064688, dated Apr. 8,
2015, together with the Written Opinion of the International Search-
ing Authority, 12 pages.

* cited by examiner

U.S. Patent Feb. 16, 2016 Sheet 1 of 18 US 9,262,799 B2
100
Computing Computing Computing
Partition Partition Partition
120 130 140
System
Console 180
110
— Computing Computing Computing
Partition Partition Partition
150 160 170
/// \\
= N
- N
//// \\\
- ~N
-~ N
Operating System Application Input and
191 Software Output Devices
BIOS 193 197
192
Non-volatile
Processors Memory Storage
194 195 196

FIG. 1

U.S. Patent Feb. 16, 2016 Sheet 2 of 18 US 9,262,799 B2

____________________ 1

I 100 |

I ; 252 |
| % Chassis

220 Controller Blade Blade Blade |

AN H 260 262 || 264 || 268 ||| |

I \ I I I] I

L _____ A [~ 270 280 I

I I

| LH Chassis 254 |

230 | Controller || Blade Blade || Blade |

| 1 1]

I I

I I

I 1| Chassis 256 I

| [T1 controlier | [Biade |[Blade | [Blade I

I I I I] I

Network | |

210 | |

| L] chassis 228 |

| Controller Blade Blade Blade |

1 1 1]
I I
______________ _I

US 9,262,799 B2

Sheet 3 of 18

Feb. 16, 2016

U.S. Patent

£ DIA
9||0JJuUoO
JISV VOd ool -
92
29¢ —
cee _—~ 89¢
ol
743 743 | e
NvY VY sbeios
CGE — T —
728 0ce 9le 208
10SS3001d 10SS330.1d INVY
UU0 BEp e~ . .cmcoo
oL (0] A (0]X3 092 > ubuwol
13]|0Nu0) 19]j01U0D
0G¢E

U.S. Patent Feb. 16, 2016 Sheet 4 of 18 US 9,262,799 B2

Reduce dense input matrix to band form
410

v

Reduce band matrix to tridiagonal form
420

v

Compute eigenvectors and eigenvalues of tridiagonal matrix
430

v

Transform eigenvectors to the banded reference system
440

v

Transform eigenvectors to the dense reference system
450

FIG. 4

U.S. Patent

FIG. 5

Feb. 16, 2016 Sheet 5 of 18 US 9,262,799 B2

Algorithm 1 Tile Band TRD Algorithm with
Householder Reflectors.

1: for step = 1,2to NT-1 do

2. DGEQRT(A4epy ,step)
3. {Left Updates}
4. DLARFB(4 step+1 step,Astep+1 ,step+1)
5. fori = step+1toNT do
6: {Right Updates}
7 DLARFB(A step+1 ,step,A i,step+1)
g: end for
9: for k = step+2to NT do
10: DTSQRT(4 step+1 step, 4 k,step)
11: {Left Updates}
12: for j = step + 1tok do
13: if (/== step + 1) then
14: DSSRFB(AstepHJ,A kjA tmpl)
15: else if (j==k) then
16: DSSRFBLR(A4tmpl, Ay ;. Atmp2)
17: else
18: DSSRFBLRT(AJ"SIQDH’A k,j)
19: end if
20: end for
21: {Right Updates}
22: form = step+1to NT do
23 if (m==step + 1) then
24; DSSRFB(4tmp2, Atmp3, Ak, m)
25: else if (m==Fk) then
26: DSSRFBLR(Amp3, Ak)
27 else if (im > k) then
28: DSSRFBLRT (4 msrep+1, Ak m)
29: end if
30: end for

31: end for
32: end for

U.S. Patent Feb. 16, 2016 Sheet 6 of 18 US 9,262,799 B2

6420 ~a

Algorithm 2 Standard Bulge Chasing Algorithm
of b extra diagonals.

- fork =1,2toN-2do
2. {Column annihilation}
3: DGEQRz(Bk-H:kerin (b,n—k),k) ‘
4. {Left and right updates on a diagonal block}
5: DSYRF(BkH ktmin (bn-k),k+2: k+min (b,n—k))
6. {Chasing the bulge}
7. fori=k+1toNwithi =+5b do
8: if i+b == n then
9: {Right update for clean-up}
10: DLARFX(_Bmin(i+b,n), i:min (i+b,n)-1)
11: end if
12: if min(i+b,n) < @m-1)|| min(i+2+b,n) < (n-1)then
13: {Column annihilation within the sweep}
14: DGEQR3 (Emin (i+b,n):min (i+2%b,n) -1, min (i+b,n):min (i+2*b,n)-1)
15: {Left and right updates on a diagonal block}
16: DSYRF(Bmin (i+b,n):min (i+2%b,n)-1, min (i+b,n):min (i+2*b,n)-1)
17: end if
13: end for
19: end for

FIG. 6

U.S. Patent Feb. 16, 2016 Sheet 7 of 18 US 9,262,799 B2

@ DGEQRT
@ DTSQRT DLARFB DLARFB
@ DLARFB
DSSRFB cleani
@ DSSRFBLR DGEQR2
DSSRFBRLT

@ DSSRFBRL DGEQRT DSYRF
clean2 DLARFB

DLARFB

cleani

DGEQR3

FIG. 7

US 9,262,799 B2

Sheet 8 of 18

Feb. 16, 2016

U.S. Patent

9zIS 9JI1 ewse|d

vy — g § =y

SITDR=ONE SO v
WLIOJSUBIIOR] |1 WEm— '+ s e v
WIOJSUBIDOR] ZO) Wrem e e e —- v
AUSCILIILII W gy [
Buiseyo abjng p——————— v
pueq o) asusp W v 4

pasn gz | =ZISY|GA ‘SPEIL) §Z1/9G ‘SI9NI0S 8100-8 9
Wa|qoid Xr9Xiy9 Uo 8zIS 9|11 Jo 10edw|

009 00¥ 00€ 00¢ 00t

000}

000¢

000¢

000Y

(s08g) awi] Bunndwo)

US 9,262,799 B2

Sheet 9 of 18

Feb. 16, 2016

U.S. Patent

00¢

SNEA ZISM19A ewsSe|d

0S¢ 00¢ 0st

00t 0s 0

WIOJSUBIPIORY ZU) frrrmmmemmrerrmmsss s snnsnsssnssssss s ssssssss s s s s s s

<I --------- I<

dwsgiw/auw e T T S g
<||||L<.........

@C_wmp_o @@_DQ .

pueq 01 ssuap
v v

pasn (Ze=92IS3|1 ‘SPeaIY] 8Z1/9S ‘SI9%00S 2100- 9|
Wa(qoid MH9XNF9 ZISHTEA J0 1weduw

0
008
000l ©
o
3
©
=
s
«
00SL
3
(¢}
©
[0
[}
000z £
0052
000€

US 9,262,799 B2

Sheet 10 of 18

Feb. 16, 2016

U.S. Patent

Vor "OI1d

aneA ¥3INdILTNIN MNvY

wiojsueIpoeq Z0
4' --------- *

dwsgiu/iuw

v-—--v
Buiseyd ab|nq

pueq o} asuap
A4 v
| N | N | N

1581 BU} 104 SPEBIY} 89//Z1G/0YC ‘PUBQ 0} BSUSP 104 SPESIL T/ ‘SIDHMO0S 8I00ZL ¥9
wi9|qoid H0Z1XA0C L U0 J3INdILTNIN MNVY 10 sloayd

000¢

000¥

0009

0008

(s99g) swi] Bunndwo)

US 9,262,799 B2

Sheet 11 of 18

Feb. 16, 2016

U.S. Patent

01 OIA

anieA H3ITdILTNIA INVY

1 _ 1 _ T f
e e e e e e e N v A
...... 00S
...... 0o00L ©
o
3
©
...... 2
=
©
...... 00S1L —
3
]
...... e
. %
OWI [B10] wreuerunernrenninnnes = e 000z &
WLIOJSUBINOB] L) Wem — s m e 5y ~
WIOJSUBIMORY ZD) W+ mm o mm o s e« vy)
UISCIU/IIU W= —— e g [R——
Buiseyo objnq P=—————— v
pueq o) asusap \ & e A 0092
_ _ _ _ _ _ 000¢

1Sal Y1 o) Spealyl 0yZ/0Z1 ‘PuUeqg 01 9suap J0) Spealyl 09 ‘SI9N00S 8100-Z| Of
wdqoId AY9xiP9 U0 YIITdILTNIN MNVY O S108y3

US 9,262,799 B2

Sheet 12 of 18

Feb. 16, 2016

U.S. Patent

pueg 0} asua(Jo} speaJty] Bunndwod Jo Jaquinn

08 0L

IT O

wojsueipoeq zo
‘I I‘
dwsgiw/uiw
V-
Buiseyo abng

pueq 0} asusp
W v

(@)
(@)
—

-{ 0os1

-1 000¢

(s0ag) awi| Bunndwod

-1 00G¢

wia|qold MH9Xi19 10 SAQHLN uononpay pueg 01 8sua(] JO UoneuIwIL1aQg

$9558204d JBY1O ||B 10} POSN SPEaIY) 09| JUBISUOD ‘S18Y00S 8100-0| 9|

000€

U.S. Patent Feb. 16, 2016

1200\

Sheet 13 of 18

Partition HPC
1201

v

v

Segment Matrix
1202

Terminate Instances
of SMP Code
1210E

v

v

Determine Number of
Threads for Each Phase
1203

Establish Phase 2
Configuration

1220A

v

v

Establish Phase 1
Configuration

1210A

Instantiate Phase 2
Instances of Code
1220B

v

v

Instantiate Instances of
SMP Code

1210B

Fix Threads to Cores
(Optional)
1220C

v

v

Fix Threads to Cores
1210C

Execute Second Phase
Operations
1220D

v

v

Execute First Phase
Operations
1210D

Terminate Phase 2
Instances of Code

1220E

v

FIG. 124

US 9,262,799 B2

U.S. Patent

Feb. 16, 2016

Y

Sheet 14 of 18

Establish Phase 3
Configuration

1230A

v

v

Instantiate Phase 3
Instances of Code

1230B

Execute Phase 4 Operations
1240D

v

v

Fix Threads to Cores
1230C

Terminate Phase 4
Instances of SMP Code

1240E

v

v

Execute Phase 3 Operations
1230D

Establish Phase 5 Configuration
1250A

v

v

Terminate Phase 3
Instances of SMP Code

1230E

Establish Phase 5 Instances
of SMP Code

1250B

v

v

Establish Phase 4 Configuration
1240A

Fix Threads to Cores
1250C

v

v

Instantiate Phase 4
Instances of SMP Code

1240B

Execute Phase 5 Operations
1250D

v

v

Fix Threads to Cores
1240C

Terminate Phase 5
Instances of SMP Code

1220E

FIG. I2B

US 9,262,799 B2

U.S. Patent Feb. 16, 2016 Sheet 15 of 18 US 9,262,799 B2

Node 01 | Node 02| | Node 03 | | Node 04 | | Node 05
1300 1301 1302 || 1303 || 1304 || 1305

Node 06 | | Node 07] | Node 08 | | Node 09] | Node 10
1306 1307 1308 1309 1310

FIG 13 Node 11| I Node 12] | Node 13] | Node 14| | Node 15
* 1311 1312 1313 1314 1315

Node 16| | Node 17] | Node 18| | Node 19] | Node 20
1316 1317 1318 1319 1320

Node 21| | Node 22| | Node 23] | Node 24 | | Node 25

1321 1322 1323 1324 1325
1400
\4 Core 01 Core 02 | | Core 03 Core 04 | | Core 05
1401 1402 1403 1404 1405

Core 06 Core 07 Core 08 Core 09 Core 10

1406 1407 1408 1409 1410
FIG. 14 | L— — L

Node cache
1430

Node memory
1420

U.S. Patent Feb. 16, 2016 Sheet 16 of 18 US 9,262,799 B2

1500 ~a

Tile 01 | Tile02 | Tile 03 | Tile 04 | Tile 05
1501 1502 1503 1504 1505

Tile06 | Tile07 | TileO8 | Tile 09 | Tile 10
1506 1507 1508 1509 1510

Tile11 | Tile12 | Tile 13 | Tile 14 | Tile 15
1511 1512 1513 1514 1515

Tile16 | Tile17 | Tile 18 | Tile 19 | Tile 20
1516 1517 1518 1519 1520

Tile21 | Tile22 | Tile23 | Tile24 | Tile 25
1521 1522 1523 1524 1525

FIG. 15

1600
T

1420 1420 1420 1420 1420

FIG. 16

U.S. Patent Feb. 16, 2016 Sheet 17 of 18 US 9,262,799 B2

1401 1402 1403 1404 1405
1406 1407 1408 1409 1410

Node memory 1400 Node cache

Key: Core allocated
FIG. 17(A) vz
:l Core not allocated

7

1401 1402 1403 1404 1405
7,

1406 1407 1408 1409 1410

Node memory 1400 Node cache
FIG. 17(B)

7,

1401 1402 1403 1404 1405
1406 1407 1408 1409 1410

Node memory 1400 Node cache

FIG. 17(C)

U.S. Patent

Feb. 16, 2016 Sheet 18 of 18 US 9,262,799 B2
1800 \
Partition Node Allocation Segmentation
1801 1802 1803
Node Band
Memory Configuration Reduction
1804 1805 1806
.- Tridiagonal .
Tridiagonal Eigensolution Band Eigenvector
1807 1808 1809
Square User
Eigenvector Interface
1810 1811

FIG. 18

US 9,262,799 B2

1
SHARED MEMORY EIGENSOLVER

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application claims priority from U.S. provi-
sional application Ser. No. 61/901,731, titled “Shared
Memory Eigensolver,” filed Nov. 8, 2013. The foregoing
application is hereby incorporated herein by reference in its
entirety.

TECHNICAL FIELD

The invention generally relates to a non-uniform memory
access (NUMA) computer system and, more particularly, the
invention relates to computing eigenvalues and eigenvectors
of a very large matrix in a NUMA computer system.

BACKGROUND ART

Some data modeling applications use matrices that
describe transformations of physical parameters. For
example, a cosmological model of a galaxy might use a
matrix to describe the motion of stars in space, and a finite
element model of a material may use a matrix to model
stresses in a material at a number of different locations. These
matrices transform initial property vectors of the model into
final property vectors by standard matrix multiplication.

For any transformation by matrix multiplication, there may
be certain vectors for which the transformation merely acts to
lengthen or shorten the vector; these vectors are called
“eigenvectors” of the transformation. Eigenvectors provide
“preferred directions”; vectors parallel to eigenvectors are not
rotated by the transformation. The corresponding scaling fac-
tor of the lengthening or shortening for a given direction is
called the “eigenvalue” for the eigenvector. Different eigen-
vectors may have different corresponding eigenvalues, and
eigenvectors with an eigenvalue of 1 are not lengthened or
shortened by the transformation; for these vectors, the trans-
formation preserves length. Figenvectors and eigenvalues
provide a useful mathematical tool to analyze matrix trans-
formations. Therefore, it is desirable to be able to compute
eigenvectors and eigenvalues (collectively, “eigenpairs™) for
any given matrix.

Several techniques are known to calculate eigenpairs of a
matrix. One family of “eigensolver” techniques first reduces
the matrix to a tridiagonal form; that is, a form in which the
main diagonal of the matrix, and the diagonals just above and
below it, may contain non-zero numbers, but all other entries
are zero. Such an eigensolver computes the eigenpairs of the
tridiagonal matrix, then convert the computed eigenvectors
back to the original reference system.

In order to achieve the best scalability on many processors,
the ACM TOMS 807 algorithm, or successive band reduction
(“SBR”), is often employed for the tridiagonal reduction
phase. In SBR, the initial, densely-populated matrix is
reduced to a multiple band intermediate form having many
non-zero diagonals in a first stage, and later reduced from the
multiple band form to the tridiagonal (three band) form in the
second stage. Accordingly, after calculating the eigenpairs in
a third stage, the eigenvector back-transformation also
requires two stages, i.e. from the tridiagonal to the multiple
band reference system in stage four, then to the original dense
reference system in stage five. The multistage SBR approach
allows highly scalable BLLAS-3 computing kernels to be used,
but the two stage eigenvector back-transformation introduces
additional floating point operations that influence scalability.

10

15

20

25

30

35

40

45

50

55

60

65

2

The Parallel Linear Algebra Software for Multicore Archi-
tectures, or “PLASMA?”, is publically available free software
from the University of Tennessee, Knoxville, and is the state
of art mathematical library for performing conversion of a
dense symmetric array to and from tridiagonal form on shared
memory systems with multi-core processors, such as the sys-
tem shown in FIGS. 1-3 and described below. At the heart of
the PLASMA implementation is a tiled storage of the data
arrays and a DAG (directed acyclic graph) scheduling of the
computational subtasks. PLASMA is an improvement over
the older LAPACK and ScalL APACK libraries in terms of
memory usage pressure, process synchronization require-
ments, task granularity, and load balance, and often results in
much better performance and scalability for sufficiently large
problems. In particular, LAPACK and Scal. APACK do not
employ SBR calculations. Also, LAPACK is not designed for
scalability, and the ScalL APACK library communicates using
message passing, which is more difficult to program and
debug.

SUMMARY OF THE EMBODIMENTS

The state of the art eigensolver PLASMA suffers from a
number of shortcomings that only become apparent when it is
tasked to solve very large problems. Various embodiments of
the invention identify and solve these shortcomings. First,
PLASMA is limited to 32-bit architectures. Because matrix
entries are addressed using 32-bit signed integers, the largest
matrix on which PLASMA may operate has a dimension N
limited to the square root of the largest 32-bit signed integer;
that is, N=sqrt(2*")=46340. This value of N is too low to
operate on matrices that have hundreds of thousands or mil-
lions of rows and columns, as is required by state of the art
computations. Second, because PLASMA is limited to such
small matrices, it does not use a tridiagonal eigenpair solver
that scales effectively for larger matrices. While such algo-
rithms exist, such as the multiple relatively robust represen-
tations (“MRRR”) algorithm that is publicly available in the
MR3SMP package, PLASMA is not designed to use them.
Third, PLASMA operates on a fixed pool of threads. Thisisa
disadvantage because different subtasks that occur in the five
stages of the eigensolver may occur in parallel and have
different computational complexities, so a static thread allo-
cation for all five stages is inefficient.

Thus, various embodiments of the invention provide meth-
ods and shared memory systems for using a combination of
the SBR and MRRR techniques to calculate eigenpairs for
dense matrices having very large numbers of rows and col-
umns. Such embodiments are not merely “scaled up” versions
of PLASMA, because they address scalability requirements
that were not contemplated in the design of PLASMA. In
particular, PLASMA does not use a highly scalable tridiago-
nal eigensolver. Moreover, PLASMA is not adapted to allo-
cate a different number of threads to each of the different
computational stages of the eigensolver.

A first embodiment is a computerized method for comput-
ing eigenvectors of a large square matrix in a high perfor-
mance computing (HPC) system having a plurality of nodes,
each node including one or more processing cores for execut-
ing program threads, the nodes having non-uniform memory
access. The method includes allocating the computing
resources of the high performance computing system into a
plurality of partitions, each partition including memory and a
plurality of computer processor cores; allocating the comput-
ing resources of the one of the plurality of partitions into a
plurality of partition nodes, each partition node including
associated node memory and a plurality of the computer

US 9,262,799 B2

3

processor cores; segmenting the large square matrix of data
into a plurality of digestible sub-matrices; and storing the
plurality of sub-matrices in a partition memory, which parti-
tion memory is accessible by each node, such that all of the
sub-matrices are accessible by each of the nodes, the partition
memory including the plurality of node memories. Then, in a
first phase, the method involve reducing the square matrix to
band form by instantiating an instance of band reduction
software on one of the plurality of partition nodes, the band
reduction software employing a user-specified first number of
threads for executing first phase matrix operations on the
sub-matrices; instantiating additional instances of band
reduction software on additional partition nodes; dedicating,
within each of the partition nodes, one of the plurality of cores
to a corresponding one of the plurality of threads; creating a
band matrix from the square matrix by performing matrix
operations on the sub-matrices using the band reduction soft-
ware, each of the threads accessing the sub-matrices from the
partition memory, such that each node executes its corre-
sponding instance of the computer software in an SMP mode;
storing the band matrix in band-matrix segments in the par-
tition memory; and terminating the instances of the band
reduction software.

In a second phase, the method includes reducing the band
matrix to tridiagonal form by instantiating an instance of
tridiagonal reduction software on one of the plurality of
nodes, the tridiagonal reduction software employing a second
number of user-specified second phase threads for executing
second phase matrix operations on the band matrix creating a
tridiagonal matrix by performing matrix operations on the
band-matrix using the tridiagonal reduction software, each of
the second phase threads accessing the band-matrix from the
partition memory storing the tridiagonal matrix in the parti-
tion memory; and terminating the instances of tridiagonal
reduction software.

In a third phase, the method includes computing eigenvec-
tors and eigenvalues of the tridiagonal matrix by instantiating
an instance of tridiagonal eigensolution software on a parti-
tion node, the tridiagonal eigensolution software employing a
third number of user-specified third phase threads for execut-
ing third phase matrix operations on the tridiagonal matrix;
determining the eigenvectors and eigenvalues of the tridiago-
nal matrix by performing matrix operations on the tridiagonal
matrix using the tridiagonal eigensolution software; storing
the eigenvectors and eigenvalues of the tridiagonal matrix in
the partition memory; and terminating the instances of the
tridiagonal eigensolution software.

Then, in a fourth phase, the method includes transforming
the eigenvectors of the tridiagonal matrix to eigenvectors of
the band matrix (e.g, express the eigenvectors of the tridiago-
nal matrix with reference to the band matrix) by instantiating
an instance of band backtransform software on one of the
plurality of partition nodes, the band backtransform software
employing a fourth number of user-specified fourth phase
threads for executing fourth phase matrix operations on the
eigenvectors and eigenvalues of the tridiagonal matrix; trans-
forming the eigenvectors of the tridiagonal matrix to eigen-
vectors of the band matrix by performing matrix operations
on the eigenvectors of the tridiagonal matrix using the band
backtransform software; storing the eigenvectors of the band
matrix in the partition memory; and terminating the instances
of the band backtransform software.

Then, in a fifth phase, the method includes transforming
the eigenvectors of the band matrix to eigenvectors of the
square matrix (e.g, express the eigenvectors of the band
matrix with reference to the square matrix) by instantiating an
instance of dense backtransform software on one of the par-

25

30

35

40

45

55

4

tition nodes, the dense backtransform software employing a
fifth number of user-specified fifth phase threads for execut-
ing fifth phase matrix operations on the eigenvectors of the
band matrix; instantiating additional instances of the dense
backtransform software on the partition nodes; dedicating,
within each of partition nodes, one of the plurality of cores to
a corresponding one of the plurality of fifth phase threads;
transforming eigenvectors of the band matrix to eigenvectors
of a square matrix by performing matrix operations on the
eigenvectors of the band matrix using the dense backtrans-
form software, each of the fifth phase threads accessing the
eigenvectors of the band matrix from the partition memory,
such that each node executes its corresponding instance of the
dense backtransform software in an SMP mode; storing the
eigenvectors of the square matrix in the partition memory;
and terminating the instances of the dense backtransform
software.

In some embodiments, the step of storing the plurality of
sub-matrices in a partition includes storing the plurality of
sub-matrices in an interleaved configuration. In some
embodiments, the band reduction software includes
PLASMA. In some embodiments, the tridiagonal eigensolu-
tion software includes the MR3SMP package.

Other embodiments include a non-transient computer
readable medium storing executable code configured to
execute on an HPC, the code comprising code for causing the
HPC to perform the method steps described herein.

Some embodiments include a system having modules for
performing the steps of the foraging methods. For example, a
system may include a user interface configured to receive
input from a user; a segmentation module configured to seg-
ment a square matrix into a plurality of tiles; a memory
module configured to store the plurality of tiles; a node con-
figuration module configured to allocate cores to threads, to
allocate the cores into a plurality of configurations corre-
sponding to a plurality of phases of a process for computing
the eigenvectors, the plurality of configurations including: a
band reduction module configured to reduce the square
matrix to a band matrix by operating on the tiles; a tridiagonal
module configured to transform the band matrix to a tridiago-
nal matrix; a tridiagonal eigenvector module configured to
determine eigenvectors of the tridiagonal matrix; a band
eigenvector module configured to transform the eigenvectors
of the tridiagonal matrix to eigenvectors of the band matrix;
and a dense eigenvector module configured to transform the
eigenvectors of the band matrix to eigenvectors of the square
matrix.

In some embodiments, the user interface may be a remote
computer. In some embodiments, each node includes node
memory that collectively form that memory module. In some
embodiments, the memory module includes interleaved
memory.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing features of embodiments will be more
readily understood by reference to the following detailed
description, taken with reference to the accompanying draw-
ings, in which:

FIG. 1 schematically shows a logical view of an HPC
system in accordance with one embodiment of the present
invention.

FIG. 2 schematically shows a physical view of the HPC
system of FIG. 1.

FIG. 3 schematically shows details of a blade chassis of the
HPC system of FIG. 1.

US 9,262,799 B2

5

FIG. 4 is a flowchart that shows five processes executed by
a scalable eigensolver in an HPC system according to an
embodiment of the invention.

FIG. 5 is an algorithm listing of the first process shown in
FIG. 4.

FIG. 6 is an algorithm listing of the second process shown
in FIG. 4.

FIG. 7 is a directed acyclic graph (DAG) that shows sched-
uling dependencies between the various tasks needed to per-
form the first and second processes shown in FIG. 4, fora 3x3
matrix.

FIG. 8 is a graph showing the impact of variation of a tile
size parameter in the computing time of an exemplary
embodiment.

FIG. 9 is a graph showing the impact of variation of a block
size parameter in the computing time of an exemplary
embodiment.

FIG. 10A and FIG. 10B are graphs showing the impact of
variation of a rank multiplier parameter on the first process
shown in FIG. 4.

FIG. 11 is a parametric study that determines the best
number of computing threads to use for the first process
shown in FIG. 4.

FIGS. 12A and 12B schematically illustrate a method of
determining eigenvectors and eigenvalues for a square
matrix.

FIG. 13 schematically illustrates a partition of an HPC.

FIG. 14 schematically illustrates a node having a plurality
of cores.

FIG. 15 schematically illustrates tiles of a square matrix.

FIG. 16 schematically illustrates data of the square matrix
arranged in an interleaved format.

FIGS. 17(A)-17(C) schematically illustrate nodes with
cores allocated for various phases of a process.

FIG. 18 schematically illustrates modules of a system for
of computing eigenvectors and eigenvalues of a square
matrix.

DETAILED DESCRIPTION OF SPECIFIC
EMBODIMENTS

Various embodiments improve the functionality of a high-
performance computer, in the process of computing eigen-
vectors and eigenvalues of a square matrix, by reallocating
computer resources at various phases of a process. A given
piece of software may be able to perform some or all of the
matrix operations necessary to compute the eigenvectors and
eigenvalues of a square matrix of limited size, but may not be
scalable to perform those operations on a larger matrix. To
work around this limitation, various embodiments store the
matrix data in a common memory accessible to each a plu-
rality of cores in a plurality of nodes, and provide access to the
data in the common memory to multiple instances of the
software. Each instance of the software runs on a correspond-
ing core within one of nodes, and each of the nodes may run
one or more slave instances of the software on its remaining
cores. In short, various embodiments include two levels of
SMP operation: a first level over a plurality of independent
nodes, and second level within each of the plurality of nodes.
Although there are other known ways of computing eigen-
vectors and eigenvalues of a square matrix on an HPC, vari-
ous embodiments improve the operation of the HPC.

DEFINITIONS

As used in this description and the accompanying claims,
the following terms shall have the meanings indicated, unless
the context otherwise requires:

10

15

20

25

30

35

40

45

50

55

60

65

6

A “large matrix” is a matrix of a dimension that is too large
to be processed by a single instance of matrix operation
software. For example, a matrix of dimension greater than 2*°
is too large to be processed by a single instance of PLASMA
(e.g., on a single node), as described further below.

A “digestible matrix™ is a sub-matrix of a large matrix, and
has dimensions that are small enough to be processed by a
single instance of matrix operation software. For example, a
matrix of dimension less than 2'6 is of a size that may be
processed by a single instance of PLASMA, as described
further below.

An “instance” of software is an execution of a computer
program that involves accessing memory on one or more
nodes and performing machine instructions such as floating
point multiplication and addition on the accessed memory by
one or more processing cores to complete a high level task.

To “terminate” an instance of software means to shut down
the infrastructure that is used to perform a software instance.
The infrastructure may include, but is not limit to, a pool of
memory and a pool of processing threads on one or more
nodes.

The term “SMP” (or “symmetric multiprocessing”) in con-
nection with a computer process means two or more computer
processors share common resources including memory, I/O
devices, interrupt system, etc., and execute the same or dif-
ferent program, and work on the same or different data, to
solve a common high level task.

The term “band reduction software” means software con-
figured to reduce a dense matrix to a band matrix, including
for example software described below.

The term “tridiagonal reduction software” means software
configured to reduce a band matrix to a tridiagonal matrix,
including for example software described below.

The term “tridiagonal eigensolution software” means soft-
ware configured to determine the eigenvalues and/or eigen-
vectors of a tridiagonal matrix, including for example soft-
ware described below.

The term “band backtransform software” means software
configured to determine the eigenvectors of a band matrix
from eigenvalues of a tridiagonal matrix, including for
example software described below.

The term “dense backtransform software” means software
configured to determine the eigenvectors of a dense matrix
from eigenvalues of a band matrix, including for example
software described below.

Overview of System Architecture

FIG. 1 schematically shows a logical view of an exemplary
high-performance computing system 100 that may be used
with illustrative embodiments of the present invention. Spe-
cifically, as known by those in the art, a “high-performance
computing system,” or “HPC system,” is a computing system
having a plurality of modular computing resources that are
tightly coupled using hardware interconnects, so that proces-
sors may access remote data directly using a common
memory address space.

The HPC system 100 includes a number of logical com-
puting partitions 120, 130, 140, 150, 160, 170 for providing
computational resources, and a system console 110 for man-
aging the plurality of partitions 120-170. A “computing par-
tition” (or “partition”) in an HPC system is an administrative
allocation of computational resources that runs a single oper-
ating system instance and has a common memory address
space. Partitions 120-170 may communicate with the system
console 110 using a logical communication network 180. A
system user, such as a scientist or engineer who desires to
perform a calculation, may request computational resources
from a system operator, who uses the system console 110 to

US 9,262,799 B2

7

allocate and manage those resources. Allocation of computa-
tional resources to partitions is described below. The HPC
system 100 may have any number of computing partitions
that are administratively assigned as described in more detail
below, and often has only one partition that encompasses all
of'the available computing resources. Accordingly, this figure
should not be seen as limiting the scope of the invention.

Each computing partition, such as partition 160, may be
viewed logically as if it were a single computing device, akin
to a desktop computer. Thus, the partition 160 may execute
software, including a single operating system (“OS”)
instance 191 that uses a basic input/output system (“BIOS”)
192 as these are used together in the art, and application
software 193 for one or more system users.

Accordingly, as also shown in FIG. 1, a computing parti-
tion has various hardware allocated to it by a system operator,
including one or more processors 194, volatile memory 195,
non-volatile storage 196, and input and output (“I/O”)
devices 197 (e.g., network cards, video display devices, key-
boards, and the like). However, in HPC systems like the
embodiment in FIG. 1, each computing partition has a great
deal more processing power and memory than a typical desk-
top computer. The OS software may include, for example, a
Windows® operating system by Microsoft Corporation of
Redmond, Washington, or a Linux operating system. More-
over, although the BIOS may be provided as firmware by a
hardware manufacturer, such as Intel Corporation of Santa
Clara, Calif., it is typically customized according to the needs
of the HPC system designer to support high-performance
computing, as described below in more detail.

As part of its system management role, the system console
110 acts as an interface between the computing capabilities of
the computing partitions 120-170 and the system operator or
other computing systems. To that end, the system console 110
issues commands to the HPC system hardware and software
on behalf of the system operator that permit, among other
things: 1) booting the hardware, 2) dividing the system com-
puting resources into computing partitions, 3) initializing the
partitions, 4) monitoring the health of each partition and any
hardware or software errors generated therein, 5) distributing
operating systems and application software to the various
partitions, 6) causing the operating systems and software to
execute, 7) backing up the state of the partition or software
therein, 8) shutting down application software, and 9) shut-
ting down a computing partition or the entire HPC system
100. These particular functions are described in more detail in
the section below entitled “System Operation.”

FIG. 2 schematically shows a physical view of a high
performance computing system 100 in accordance with the
embodiment of FIG. 1. The hardware that comprises the HPC
system 100 of FIG. 1 is surrounded by the dashed line. The
HPC system 100 is connected to an enterprise data network
210 to facilitate user access.

The HPC system 100 includes a system management node
(“SMN”) 220 that performs the functions of the system con-
sole 110. The management node 220 may be implemented as
a desktop computer, a server computer, or other similar com-
puting device, provided either by the enterprise or the HPC
system designer, and includes software necessary to control
the HPC system 100 (i.e., the system console software).

The HPC system 100 is accessible using the data network
210, which may include any data network known in the art,
such as an enterprise local area network (“LAN”), a virtual
private network (“VPN”), the Internet, or the like, or a com-
bination of these networks. Any of these networks may permit
a number of users to access the HPC system resources
remotely and/or simultaneously. For example, the manage-

10

15

20

25

30

35

40

45

50

55

60

65

8

ment node 220 may be accessed by an enterprise computer
230 by way of remote login using tools known in the art such
as Windows® Remote Desktop Services or the Unix secure
shell. If the enterprise is so inclined, access to the HPC system
100 may be provided to a remote computer 240. The remote
computer 240 may access the HPC system by way of a login
to the management node 220 as just described, or using a
gateway or proxy system as is known to persons in the art.

The hardware computing resources of the HPC system 100
(e.g., the processors, memory, non-volatile storage, and 1/0
devices shown in FIG. 1) are provided collectively by one or
more “blade chassis,” such as blade chassis 252, 254, 256,
258 shown in FIG. 2, that are managed and allocated into
computing partitions. A blade chassis is an electronic chassis
that is configured to house, power, and provide high-speed
data communications between a plurality of stackable, modu-
lar electronic circuit boards called “blades.”” Each blade
includes enough computing hardware to act as a standalone
computing server. The modular design of a blade chassis
permits the blades to be connected to power and data lines
with a minimum of cabling and vertical space.

Accordingly, each blade chassis, for example blade chassis
252, has a chassis management controller 260 (also referred
to as a “chassis controller” or “CMC”) for managing system
functions in the blade chassis 252, and a number of blades
262,264, 266 for providing computing resources. Each blade,
for example blade 262, contributes its hardware computing
resources to the collective total resources of the HPC system
100. The system management node 220 manages the hard-
ware computing resources of the entire HPC system 100
using the chassis controllers, such as chassis controller 260,
while each chassis controller in turn manages the resources
for just the blades in its blade chassis. The chassis controller
260 is physically and electrically coupled to the blades 262-
266 inside the blade chassis 252 by means of a local manage-
ment bus 268, described below in more detail. The hardware
in the other blade chassis 254-258 is similarly configured.

The chassis controllers communicate with each other using
a management connection 270. The management connection
270 may be a high-speed LAN, for example, running an
Ethernet communication protocol, or other data bus. By con-
trast, the blades communicate with each other using a com-
puting connection 280. To that end, the computing connection
280 illustratively has a high-bandwidth, low-latency system
interconnect, such as Numalink, developed by Silicon
Graphics International Corp. of Fremont, Calif.

The chassis controller 260 provides system hardware man-
agement functions to the rest of the HPC system. For
example, the chassis controller 260 may receive a system boot
command from the SMN 220, and respond by issuing boot
commands to each of the blades 262-266 using the local
management bus 268. Similarly, the chassis controller 260
may receive hardware error data from one or more of the
blades 262-266 and store this information for later analysis in
combination with error data stored by the other chassis con-
trollers. In some embodiments, such as that shown in FIG. 2,
the SMN 220 or an enterprise computer 230 are provided
access to a single, master chassis controller 260 that processes
system management commands to control the HPC system
100 and forwards these commands to the other chassis con-
trollers. In other embodiments, however, an SMN 220 is
coupled directly to the management connection 270 and
issues commands to each chassis controller individually. Per-
sons having ordinary skill in the art may contemplate varia-
tions of these designs that permit the same type of function-
ality, but for clarity only these designs are presented.

US 9,262,799 B2

9

The blade chassis 252, the computing hardware of its
blades 262-266, and the local management bus 268 may be
provided as known in the art. However, the chassis controller
260 may be implemented using hardware, firmware, or soft-
ware provided by the HPC system designer. Each blade pro-
vides the HPC system 100 with some quantity of processors,
volatile memory, non-volatile storage, and 1/O devices that
are known in the art of standalone computer servers. How-
ever, each blade also has hardware, firmware, and/or software
to allow these computing resources to be grouped together
and treated collectively as computing partitions, as described
below in more detail in the section entitled “System Opera-
tion.”

While FIG. 2 shows an HPC system 100 having four chas-
sis and three blades in each chassis, it should be appreciated
that these figures do not limit the scope of the invention. An
HPC system may have dozens of chassis and hundreds of
blades; indeed, HPC systems often are desired because they
provide very large quantities of tightly-coupled computing
resources.

FIG. 3 schematically shows a single blade chassis 252 in
more detail. In this figure, parts not relevant to the immediate
description have been omitted. The chassis controller 260 is
shown with its connections to the system management node
220 and to the management connection 270. The chassis
controller 260 may be provided with a chassis data store 302
for storing chassis management data. In some embodiments,
the chassis data store 302 is volatile random access memory
(“RAM”), in which case data in the chassis data store 302 are
accessible by the SMN 220 so long as power is applied to the
blade chassis 252, even if one or more of the computing
partitions has failed (e.g., due to an OS crash) or a blade has
malfunctioned. In other embodiments, the chassis data store
302 is non-volatile storage such as a hard disk drive (“HDD”)
or a solid state drive (“SSD”). In these embodiments, data in
the chassis data store 302 are accessible after the HPC system
has been powered down and rebooted.

FIG. 3 shows relevant portions of specific implementations
of'the blades 262 and 264 for discussion purposes. The blade
262 includes a blade management controller 310 (also called
a “blade controller” or “BMC”) that executes system man-
agement functions at a blade level, in a manner analogous to
the functions performed by the chassis controller at the chas-
sis level. For more detail on the operations of the chassis
controller and blade controller, see the section entitled “Sys-
tem Operation” below. The blade controller 310 may be
implemented as custom hardware, designed by the HPC sys-
tem designer to permit communication with the chassis con-
troller 260. In addition, the blade controller 310 may have its
own RAM 316 to carry out its management functions. The
chassis controller 260 communicates with the blade control-
ler of each blade using the local management bus 268, as
shown in FIG. 3 and the previous figures.

The blade 262 also includes one or more processors 320,
322 that are connected to RAM 324, 326. Blade 262 may be
alternately configured so that multiple processors may access
a common set of RAM on a single bus, as is known in the art.
It should also be appreciated that processors 320, 322 may
include any number of central processing units (“CPUs”) or
cores, as is known in the art. The processors 320, 322 in the
blade 262 are connected to other items, such as a data bus that
communicates with I/O devices 332, a data bus that commu-
nicates with non-volatile storage 334, and other buses com-
monly found in standalone computing systems. (For clarity,
FIG. 3 shows only the connections from processor 320 to
some devices.) The processors 320, 322 may be, for example,
Intel® Core™ processors manufactured by Intel Corpora-

20

30

40

45

10

tion. The I/O bus may be, for example, a PCI or PCI Express
(“PCle”) bus. The storage bus may be, for example, a SATA,
SCS], or Fibre Channel bus. It will be appreciated that other
bus standards, processor types, and processor manufacturers
may be used in accordance with illustrative embodiments of
the present invention.

Each blade (e.g., the blades 262 and 264) includes an
application-specific integrated circuit 340 (also referred to as
an “ASIC”, “hub chip”, or “hub ASIC”) that controls much of
its functionality. More specifically, to logically connect the
processors 320, 322, RAM 324, 326, and other devices 332,
334 together to form a managed, multi-processor, coherently-
shared distributed-memory HPC system, the processors 320,
322 are electrically connected to the hub ASIC 340. The hub
ASIC 340 thus provides an interface between the HPC system
management functions generated by the SMN 220, chassis
controller 260, and blade controller 310, and the computing
resources of the blade 262.

In this connection, the hub ASIC 340 connects with the
blade controller 310 by way of a field-programmable gate
array (“FPGA”) 342 or similar programmable device for
passing signals between integrated circuits. In particular, sig-
nals are generated on output pins of the blade controller 310,
in response to commands issued by the chassis controller 260.
These signals are translated by the FPGA 342 into commands
for certain input pins of the hub ASIC 340, and vice versa. For
example, a “power on” signal received by the blade controller
310 from the chassis controller 260 requires, among other
things, providing a “power on” voltage to a certain pin on the
hub ASIC 340; the FPGA 342 facilitates this task.

The field-programmable nature of the FPGA 342 permits
the interface between the blade controller 310 and ASIC 340
to be reprogrammable after manufacturing. Thus, for
example, the blade controller 310 and ASIC 340 may be
designed to have certain generic functions, and the FPGA 342
may be used advantageously to program the use of those
functions in an application-specific way. The communica-
tions interface between the blade controller 310 and ASIC
340 also may be updated if a hardware design error is discov-
ered in either module, permitting a quick system repair with-
out requiring new hardware to be fabricated.

Also in connection with its role as the interface between
computing resources and system management, the hub ASIC
340 is connected to the processors 320, 322 by way of a
high-speed processor interconnect 344. In one embodiment,
the processors 320, 322 are manufactured by Intel Corpora-
tion which provides the Intel® QuickPath Interconnect
(“QPI”) for this purpose, and the hub ASIC 340 includes a
module for communicating with the processors 320, 322
using QPI. Other embodiments may use other processor inter-
connect configurations.

The hub chip 340 in each blade also provides connections
to other blades for high-bandwidth, low-latency data commu-
nications. Thus, the hub chip 340 includes a link 350 to the
computing connection 280 that connects different blade chas-
sis. This link 350 may be implemented using networking
cables, for example. The hub ASIC 340 also includes connec-
tions to other blades in the same blade chassis 252. The hub
ASIC 340 of blade 262 connects to the hub ASIC 340 of blade
264 by way of a chassis computing connection 352. The
chassis computing connection 352 may be implemented as a
data bus on a backplane of the blade chassis 252 rather than
using networking cables, advantageously allowing the very
high speed data communication between blades that is
required for high-performance computing tasks. Data com-
munication on both the inter-chassis computing connection

US 9,262,799 B2

11

280 and the intra-chassis computing connection 352 may be
implemented using the Numal ink protocol or a similar pro-
tocol.

Overview of System Operation

System management commands generally propagate from
the SMN 220, through the management connection 270 to the
blade chassis (and their chassis controllers), then to the blades
(and their blade controllers), and finally to the hub ASICS that
implement the commands using the system computing hard-
ware.

As a concrete example, consider the process of powering
on an HPC system. In accordance with exemplary embodi-
ments of the present invention, the HPC system 100 is pow-
ered when a system operator issues a “power on” command
from the SMN 220. The SMN 220 propagates this command
to each ofthe blade chassis 252-258 by way of their respective
chassis controllers, such as chassis controller 260 in blade
chassis 252. Each chassis controller, in turn, issues a “power
on” command to each of the respective blades in its blade
chassis by way of their respective blade controllers, such as
blade controller 310 of blade 262. Blade controller 310 issues
a “power on” command to its corresponding hub chip 340
using the FPGA 342, which provides a signal on one of the
pins of the hub chip 340 that allows it to initialize. Other
commands propagate similarly.

Once the HPC system is powered on, its computing
resources may be divided into computing partitions. The
quantity of computing resources that are allocated to each
computing partition is an administrative decision. For
example, an enterprise may have a number of projects to
complete, and each project is projected to require a certain
amount of computing resources. Different projects may
require different proportions of processing power, memory,
and I/O device usage, and different blades may have different
quantities of the resources installed. The HPC system admin-
istrator takes these considerations into account when parti-
tioning the computing resources of the HPC system 100.
Partitioning the computing resources may be accomplished
by programming each blade’s RAM 316. For example, the
SMN 220 may issue appropriate blade programming com-
mands after reading a system configuration file.

The collective hardware computing resources of the HPC
system 100 may be divided into computing partitions accord-
ing to any administrative need. Thus, for example, a single
computing partition may include the computing resources of
some or all of the blades of one blade chassis 252, all of the
blades of multiple blade chassis 252 and 254, some of the
blades of one blade chassis 252 and all of the blades of blade
chassis 254, all of the computing resources of the entire HPC
system 100, and other similar combinations. Hardware com-
puting resources may be partitioned statically, in which case
areboot of the entire HPC system 100 is required to reallocate
hardware. Alternatively and preferentially, hardware comput-
ing resources are partitioned dynamically while the HPC
system 100 is powered on. In this way, unallocated resources
may be assigned to a partition without interrupting the opera-
tion of other partitions.

It should be noted that once the HPC system 100 has been
appropriately partitioned, each partition may be considered to
act as a standalone computing system. Thus, two or more
partitions may be combined to form a logical computing
group inside the HPC system 100. Such grouping may be
necessary if, for example, a particular computational task is
allocated more processors or memory than a single operating
system can control. For example, if a single operating system
can control only 64 processors, but a particular computational
task requires the combined power of 256 processors, then

10

15

20

25

30

35

40

45

50

55

60

65

12

four partitions may be allocated to the task in such a group.
This grouping may be accomplished using techniques known
in the art, such as installing the same software on each com-
puting partition and providing the partitions with a VPN.

Once at least one partition has been created, the partition
may be booted and its computing resources initialized. Each
computing partition, such as partition 160, may be viewed
logically as having a single OS 191 and a single BIOS 192. As
is known in the art, a BIOS is a collection of instructions that
electrically probes and initializes the available hardware to a
known state so that the OS can boot, and is typically provided
in a firmware chip on each physical server. However, a single
logical computing partition 160 may span several blades, or
even several blade chassis. A processor 320 or 322 inside a
blade may be referred to as a “computing node” or simply a
“node” to emphasize its allocation to a particular partition. It
will be understood that a physical blade may comprise more
than one computing node if it has multiple processors 320,
322 and memory 324, 326.

Booting a partition in accordance with an embodiment of
the invention requires a number of modifications to be made
to a blade chassis that is purchased from stock. In particular,
the BIOS in each blade is modified to determine other hard-
ware resources in the same computing partition, not just those
in the same blade or blade chassis. After a boot command has
been issued by the SMN 220, the hub ASIC 340 eventually
provides an appropriate signal to the processor 320 to begin
the boot process using BIOS instructions. The BIOS instruc-
tions, in turn, obtain partition information from the hub ASIC
340 such as: an identification (node) number in the partition,
a node interconnection topology, a list of devices that are
present in other nodes in the partition, a master clock signal
used by all nodes in the partition, and so on. Armed with this
information, the processor 320 may take whatever steps are
required to initialize the blade 262, including 1) non-HPC-
specific steps such as initializing I/O devices 332 and non-
volatile storage 334, and 2) also HPC-specific steps such as
synchronizing alocal hardware clock to a master clock signal,
initializing HPC-specialized hardware in a given node, man-
aging a memory directory that includes information about
which other nodes in the partition have accessed its RAM, and
preparing a partition-wide physical memory map.

At this point, each physical BIOS has its own view of the
partition, and all of the computing resources in each node are
prepared for the OS to load. The BIOS then reads the OS
image and executes it, in accordance with techniques known
in the art of multiprocessor systems. The BIOS presents to the
OS a view of the partition hardware as if it were all present in
a single, very large computing device, even if the hardware
itself is scattered among multiple blade chassis and blades. In
this way, a single OS instance spreads itself across some, or
preferably all, of the blade chassis and blades that are
assigned to its partition. Different operating systems may be
installed on the various partitions. If an OS image is not
present, for example immediately after a partition is created,
the OS image may be installed using processes known in the
art before the partition boots.

Once the OS is safely executing, its partition may be oper-
ated as a single logical computing device. Software for car-
rying out desired computations may be installed to the various
partitions by the HPC system operator. Users may then log
into the SMN 220. Access to their respective partitions from
the SMN 220 may be controlled using volume mounting and
directory permissions based on login credentials, for
example. The system operator may monitor the health of each
partition, and take remedial steps when a hardware or soft-
ware error is detected. The current state of long-running

US 9,262,799 B2

13

application programs may be saved to non-volatile storage,
either periodically or on the command of the system operator
or application user, to guard against losing work in the event
of a system or application crash. The system operator or a
system user may issue a command to shut down application
software. Other operations of an HPC partition may be known
to a person having ordinary skill in the art. When administra-
tively required, the system operator may shut down a com-
puting partition entirely, reallocate or deallocate computing
resources in a partition, or power down the entire HPC system
100.

Scalable FEigensolver

FIG. 4 is a flowchart that shows five processes executed by
a scalable eigensolver in an HPC system 100. The flowchart
begins with a square input matrix for which a user desires to
calculate eigenvectors and eigenvalues (collectively, eigen-
pairs). Typically, the matrix is dense, rather than sparse.
“Dense” matrices are those matrices whose entries are prima-
rily non-zero. Dense matrices typically require more compu-
tational resources to operate on, so these matrices are con-
verted into band matrices and tridiagonal matrices as
described herein.

In a first process 410, the dense input matrix is reduced to
a band matrix. A “band matrix” is a sparse matrix whose
non-zero entries are confined to diagonal bands that include
the main diagonal and a number of diagonals on either side of
(that is, above or below) the main diagonal. The total number
of such bands is called the matrix “bandwidth.” A purely
diagonal matrix has a bandwidth of one; that is, all non-zero
entries are confined to a single band along the main diagonal.
A tridiagonal matrix has a bandwidth of three. However, the
process 410 does not convert the input matrix to a tridiagonal
matrix, but rather converts it to a matrix having a larger
bandwidth than three. The algorithm 5410 used in process
410 of an illustrated embodiment of the invention is shown in
FIG. 5.

In a second process 420, the band matrix is further reduced
to a tridiagonal form. Such tridiagonal matrices lend them-
selves to various computational shortcuts that are not present
in matrices having larger bandwidths. The algorithm 6420
used in process 420 of an illustrated embodiment is shown in
FIG. 6. Processes 410 and 420 cooperate to reduce the dense
input matrix to a tridiagonal matrix.

Process 410 operates by performing successive band
reduction (“SBR”), while process 420 operates by perform-
ing Householder reflections. Both techniques are known in
the art; however a key difference between them is that the
SBR computation comprises mostly matrix-matrix multipli-
cations, while the Householder computation primarily com-
prises matrix-vector multiplications. Matrix-matrix multipli-
cations permit greater economies of scale when operating on
an HPC system 100, because they permit higher data reuse. To
be specific, in a matrix-matrix multiplication, each entry of
the first matrix is multiplied by a collection of entries of the
second matrix; that is, each entry is used multiple times. This
multiple use permits so-called block or tile matrix multipli-
cation, which is very efficient on an HPC system 100. How-
ever, in a matrix-vector multiplication, each entry of the
matrix is multiplied by only a single entry of the vector.
Therefore, the matrix-matrix operations of SBR in process
410 are better suited to data localization in an HPC system
100 than the matrix-vector operations of Householder reflec-
tions in process 420.

There is a tradeoff between the amount of data localization
and the overall computational efficiency that must be
addressed. On the one hand, if the SBR block (or “tile”) size
is too large, then the bandwidth of the sparse matrix resulting

10

15

20

25

30

35

40

45

50

55

60

65

14

from process 410 will be high, causing process 420 to take an
inefficient length of time. On the other hand, if the SBR tile
size is too small, then the data logistic requirements become
expensive, and too much time is spent distributing tiles and
aggregating results of tile multiplications. Experiments indi-
cate that an optimum tile size for certain Intel® processors
used in a test system is anywhere between about 128 and 512
entries on each side of a square tile, and preferably close to
300 entries per side. Other embodiments may be optimized
using different tile sizes. The impact of tile size on the overall
computing time of an exemplary embodiment is shown in
FIG. 8. Note that in order to avoid shared memory network
hotspots, all the memory pages are distributed evenly in a
round-robin fashion over the computing nodes for achieving
the best performance.

The algorithms of FIGS. 5 and 6, for processes 410 and 420
respectively, are described in LAPACK Working Note
(“LAWN?”) 244, which is incorporated by reference in its
entirety herein. Process 430 requires computing eigenvectors
and eigenvalues of the tridiagonal matrix obtained from pro-
cess 420. While many methods are available, including power
iteration, inverse iteration, the bisection method, and divide-
and-conquer, a preferred embodiment uses the multiple rela-
tively robust representations (MRRR) method. The best
implementation to date is MR3SMP, and is distributed as
open source software separately from PLASMA. This soft-
ware scales very well on large numbers of processors, unlike
existing PLASMA installations.

The LAWN 244 publication did not provide the algorithms
for processes 440 and 450. In accordance with an embodi-
ment of the present invention, the tiled algorithms in these
two processes construct the Householder reflectors in pro-
cesses 420 and 410, respectively, and accumulatively apply
them to the eigenvectors of the tridiagonal matrix to obtain the
eigenvectors of the original matrix. To be explicit, process
440 transforms the computed eigenvectors of the tridiagonal
matrix into eigenvectors of the band matrix using data
obtained during process 420, and process 450 transforms the
eigenvectors of the band matrix into eigenvectors of the input
matrix using data obtained during process 410.

The algorithms used in processes 410-450 scale as follows.
The floating point intensive work in the eigensolver is done in
processes 410, 440, and 450. These processes have floating
operation counts of (4/3)*N>, 2*N> and (4/3)*N°, respec-
tively, where N is the dimension of the matrix. Process 420
has O(N?) floating point operation count, so it can be left out
of the eigensolver scalability considerations. Also, the float-
ing point operation count of process 430 is O(N?) instead of
O(N?), so the MRRR implementation details can be left out of
the considerations for the overall eigensolver scalability.
Overall, the computation scales as O(N>), but linear improve-
ments can be made to the runtime by adjusting various param-
eters, as now described.

The scalability and performance of the three floating point
intensive processes 410, 440, 450 are influenced largely by
the number of computing threads (NTHDS), the PLASMA
tile size (NB), and an internal VBLKSIZ blocking factor that
impacts only process 440. Each of these stages would per-
form most optimally for certain but not necessarily identical
NTHDS, NB, and VBLKSIZ. Moreover, if a particular value
of NTHDS is less than the available total number of comput-
ing cores, the computing threads can be either concentrated
on a few nodes, or scattered over many computing nodes, to
further alleviate network hotspots. The scattering of the com-
puting threads is controlled by a RANK_MULTIPLIER envi-
ronmental variable.

US 9,262,799 B2

15

Scalability of these processes to very large matrices is
hampered by PLASMA’s implementation. Before a
PLASMA function can be called, the PLASMA infrastruc-
ture for a given number of computing cores, and a tile size and
other blocking factors need to be initialized, and the tile size
and the number of computing cores stay constant throughout
the computation until the infrastructure is destroyed. Yet each
of'the function-call subtasks may be optimized for a different
number of cores, tile size values, or blocking factor values.

Since only NB and VBLKSIZ need to be kept constant
throughout the different stages, illustrative embodiments of
the invention apply the following method to optimize the
eigensolver performance on large numbers of multi-core pro-
cessors. The tile size NB is set to a large enough number to
permit efficient computation, but not too large to start to lose
performance (see FIG. 8 for an analysis of the impact of tile
size on computing time in an order 64 k matrix). In the
embodiment tested to produce FIG. 8, the optimal tile size is
approximately 320, or at least within the range 256 to 384;
other embodiments may have different optimal tile sizes.

A performance analysis determines the relative runtimes of
the stages. If the process 440 runtime is very large compared
to that of process 410 or process 450, VBLKSIZ is increased
until the runtime of process 440 no longer dominates that of
the other processes. FIG. 9 is a graph showing the impact of
variation of the VBLKSIZ parameter in the computing time of
an exemplary embodiment. Notice that the value of this
parameter affects run time primarily in the Q2 backtransform
stage (i.e., process 440). In the embodiment tested to produce
FIG. 9, the optimal VBLKSIZ is approximately 64, or at least
within the range 48 to 128; other embodiments may have a
different optimal VBLKSIZ.

The RANK_MULTIPLIER parameter can be adjusted to
improve the performance of process 410. FIG. 10A is an
example showing such an optimization for this process in an
order 120 k matrix. In the embodiment tested to produce FIG.
10A, the optimal RANK_MULTIPLIER is 8; other embodi-
ments may have a different optimal RANK_MULTIPLIER.
FIG. 10B is an example showing such an optimization for this
process in an order 64 k matrix.

During the computation, the PLASMA infrastructure is
shut down and reinitiated with a different value of NTHDS
between each process 410-450 shown in FIG. 4. The number
of' threads is separately and respectively determined, for each
such process, as a function of the relative runtimes of the
processes. In some embodiments, the user of the system may
input, to the computer for use in the process, data specifying
the number of threads for each phase. In this way, each pro-
cess 410-450 can use the optimal number of threads. For
example, FIG. 11 shows a parametric study for determining
the best number of threads (NTHDS) for the dense-to-band
reduction (process 410) of an order 64 k matrix. In the
embodiment tested to produce FIG. 11, the optimal number of
threads is approximately 50, or at least in the range 40 to 60;
other embodiments may have a different optimal NTHDS.

The algorithms used in FIGS. 4-6 may operate using mul-
tiple cores in an HPC system 100. PLASMA itself relies on
runtime scheduling of parallel subtasks (i.e., functions such
as matrix multiplications). However, some subtasks depend
on others, and the relationships between the subtasks can be
complex. The relationships may be expressed through a task
graph, typically shown as a directed acyclic graph (DAG),
which can be explored at runtime. An example ofthe DAG for
processes 410 and 420 is shown in FIG. 7. The ovals on the
left denote a step in the algorithmic sequence and the number
of subtasks that can be executed in parallel in that step. Each
subtask may execute on a number of cores. While all pro-

20

30

40

45

55

16

cesses may be dynamically scheduled using a DAG, pro-
cesses 440 and 450 may be statically scheduled for improved
performance.

Dynamic Hardware Re-Allocation

In one embodiment of computing eigenvectors and eigen-
values of a square matrix in a high performance computing
(HPC) system, the computer cores of the HPC are re-allo-
cated for each of the five phases (410-450). Generally, the
computer system is organized into 5 different configurations,
or partitions for each of the 5 phases described in connection
with FIG. 4. For example, the partition/configuration for the
1% phase may have say 50 nodes out of a total of 200 in the
system, and the partition/configuration for phase 4 may have
all the 200 nodes, etc. More detail is provided below.

In the following illustrative embodiment 1200, the soft-
ware used for performing matrix operations in each of the five
phases is as described above, although other software may be
used for some or all of the phases. In other words, the embodi-
ments are not limited to the use of the specific software named
below.

The method 1200 is schematically illustrated in the flow
chart of FIG. 12A and FIG. 12B, which together represent a
single, illustrative flow. Some steps may be performed in an
order other than that shown in FIGS. 12A and 12B, so the
order shown is not a limitation on all embodiments.

At step 1201, if the resources of a HPC have not already
been partitioned, the method allocates the resources of a HPC
into one or more partitions. Each partition includes a number
of nodes, as schematically illustrated in FIG. 13. In the
example of FIG. 13, a partition 1300 includes 20 nodes,
although other embodiments may have more or fewer nodes.
To that end, step 1201 may include performing some assess-
ment of the square matrix for which eigenvectors and eigen-
values are to be found, for example to determine a number of
threads for performing the process and may also include
receiving input from a user specifying the number of threads
for each phase.

Once established in a partition, the number of nodes in the
partition, and consequently the number of cores in the parti-
tion, remain fixed throughout the remainder of the process,
although the assignment of cores to tasks (e.g., threads to be
processed) may change at various phases. In fact, in some
phases, some cores may not be used at all, while in other
phases all cores in the partition are used to process data.

An illustrative embodiment of a node 1400 is schemati-
cally illustrated in FIG. 14. Each node 1400 includes several
cores (e.g., 1401-1410). In this example, the node 1400 has 10
cores, but other embodiments may have more or fewer cores.
Intotal, the partition in this example has 200 cores (20 nodesx
10 cores/node=200 cores).

Each node 1400 also includes computer memory. For
example, node 1400 has node main memory 1420, and node
cache memory 1430. In some embodiments, the node cache
memory may be part of the node main memory 1420. A
node’s main memory and/or node cache memory of each
node may be configured such that it is read/write accessible
only to the cores of that node, or may be configured such that
it is read/write accessible to other nodes and cores. In this
illustrative embodiment, the node main memory and node
cache memory of each of the nodes in the partition 1300 are
configured to allow read/write access to each core in each
other node.

In some embodiments, a microprocessor (e.g., on a blade)
may be a single integrated circuit having several cores and
associated memory. Such a microprocessor may form a node,
since it has cores and memory. In other embodiments, two or
more microprocessor integrated circuits, for example each in

US 9,262,799 B2

17

its own socket on a blade, may together form a node. An
advantage of defining nodes by processor integrated circuit,
or by processors in closely-spaced sockets, is that each of the
cores on such nodes has local access the node’s memory,
since that memory is on the integrated circuit(s). In this way,
access by the cores to the node memory may be faster than the
cores’ access to other memory, such as memory on other
nodes for example. Also, a core’s access to data on the same
node avoids the complexities of accessing data that is not on
the node (which may be known as “off-node” data).

At step 1202, the method 1200 segments the square matrix
1500 into a number of sub-matrices, or “tiles,” (e.g., 1501-
1520), each of which is a digestible matrix in view of the band
reduction software as described below, as schematically illus-
trated in FIG. 15. The number of tiles may be specified by the
user, via user input. In some embodiments, the number oftiles
would be much greater than the total number of processing
cores.

To store the tiles, the software distributes the tiles over the
memories of the various nodes in the partition. In some
embodiments, the method stores the data in interleaved form
(see, for example, FIG. 16, in which the node memories 1420
are configured to store data in an interleaved fashion. Collec-
tively, the memory may be referred to as the “partition
memory.” Later in the process 1200, the nodes will operate on
that data.

It is worth noting that prior art methods also segmented a
square matrix into tiles, and stored the tiles on the memory of
the available nodes. However, in prior art methods, each node
only operated on the data (i.e., tile) stored in its own node
memory. Each node was unable to access data in the node
memories of other nodes. This approach had the benefit of
keeping data access simple, since all the data of a tile was in
memory local to the core operating on that data. A downside
to this approach, however, arises when some computations to
be performed by a core require, as input, the results of a
computation performed on, and stored in the node memory
of, another node. That is unlike present embodiments, how-
ever, in which all node memories (e.g., the partition memory)
are accessible by all other nodes. In at least some phases of
present embodiments, the HPC computer system is config-
ured to run two levels of SMP processing, in which, at an
intra-node level, each node (i.e., the cores in each node) runs
software (e.g., band reduction software, to name but one
example) in an SMP configuration, and in which, at an inter-
node level, several nodes operate in an SMP configuration.
This may be referred to as “nested SMP.”

Atstep 1203, the method determines the number of threads
to beused in each phase (e.g., 410-450). For example, the user
may determine, or receive as input from a user, the number of
threads based on the size of the square matrix for which
eigenvectors are to be found. The number of threads may be
different for the various phases, so that the threads may be
referred to as “Phase 1 threads,” “Phase 2 threads,” “Phase 3
threads,” “Phase 4 threads,” and “Phase 5 threads” As
described in more detail below, the hardware resources of the
HPC computer are reallocated for each phase based in part on
the number of threads used in that phase.

The dense to band reduction phase is very sensitive to the
tile size and the number of threads that are used for the
computation. For about the same computing resources, the
dense to band performance may differ by one order of mag-
nitude if the number of threads and the tile size are not close
enough to the optimal values. The optimal values for the tile
size and the number of threads also would change with the
problem size.

10

30

40

45

55

18

An approach to provide estimates for the Phase 1 perfor-
mance based on the tile size, the number of threads and the
problem size involves executing a truncated Phase I software
for just several iterations using preliminary guesses or esti-
mates of the tile size and a number of threads for a problem
size. Timing measurements from the several iteration are then
used to project the Phase I performance for the particular tile
size, number of threads, and problem size. The process is
repeated several times with different tile sizes, numbers of
threads for the same problem size, in order to determine the
best (or at least good) tile size and number of threads for the
problem size. The approach may even be implanted in the
form of a software tool. The user can run the tool quickly as a
pre-step to determine the tile size, which will be used for all 5
phases, and the number of threads to use for Phase 1, before
the eigensolution starts.

Note that once the tile size and the number of threads are
determined for a problem size. The same values can be used
for somewhat similar problem sizes and there is no need to
rerun the tool. The numbers of threads for the other 4 phases
can be easily determined from past experience and the per-
formance of these phases are not as sensitive to these param-
eters. It is possible to embed the Phase 1 performance esti-
mator tool in the eigensolver as an autotune function to be
executed first.

Phase 1: Reduce Square Matrix to Band Form

At step 1210A, and based on the number of threads to be
used by the partition to process the tiles in the first phase (e.g.,
410, which phase may be known as “Phase 1,” and the threads
may be referred to as “Phase 1 threads”), the method 1200
establishes a first configuration of the available cores.

The cores assigned to process threads (the “allocated
cores”) may be all of the cores in the partition, or a subset of
those cores, depending on the number of threads. For example
a configuration for Phase 1 may use only cores 1 and 8 of each
node, as schematically illustrated by shaded cores in FIG.
17(A). As another example a configuration for Phase 1 may
use only cores 1, 5 and 8 of each node, as schematically
illustrated by shaded cores in FIG. 17(B). Cores notused (i.e.,
not allocated to process data) in this phase are shown as
un-shaded rectangles.

At step 1210B, the method instantiates instances of band
reduction software on each node, so that one core on the node
(e.g., core 1401) executes a “master” instance of the software.
Other allocated cores on the node (e.g., core 1408) execute a
“slave” instance of the software. Collectively, the master
instances and the slave instances of the software may be
referred to as the “Phase 1 Instances.” Each core on each node
has access to the partition memory. Each node therefore runs
in SMP mode.

At step 1210C, each thread is affixed to a corresponding
one of the cores (e.g., in this example, cores 1401 and 1408 of
each node). In other words, each thread remains pinned to its
corresponding core, such that the thread will not be trans-
ferred (e.g., by the operating system) to another core or other
node. A core may be dedicated to a thread (or, stated alter-
nately, a thread may be “affixed,” or “fixed” or “pinned” to a
specific core) by preventing a computer’s operating system
from performing a function that typical operating systems
perform: reassigning threads among cores. Pinning a thread
to a core may be done by configuring a computer’s operating
system, or by software running under a computer’s operating
system. As just one example, some of Microsoft’s Windows
operating systems include a “SetThread AffinityMask” func-
tion that can be set by a user, or software running on the
operating system, to identify a logical processor (e.g., a core)
that the thread is allowed to run on. As another example,

US 9,262,799 B2

19
SGI’'s “DPLACE” tool is used to bind a related set of pro-
cesses to specific cores or nodes to prevent process migra-
tions.

This is different from the operation of a typical computer,
in which the computer’s operating system assigns and reas-
signs threads to cores, for example depending on what thread
is next to be executed and what core is available. Generally, in
the prior art, the threads are agnostic as to which core executes
them, and the cores are agnostic as to which thread they
execute, so such an approach tends to make efficient use of
available computing resources. However, such an approach
may also move or migrate a thread from a first core to second
core. If the second core is on another node, such that the
second core does not have access to the cache memory of the
first node, the computations may be slowed or made less
efficient, since the thread does not have access to the data that
the thread had previously used from, and/or stored in, that
cache. Allocating a core to a thread, in effect, dedicates the
core’s hardware to that thread during the first phase (410) of
the process, thereby improving the operation of the HPC in
executing that first phase of the process.

Note that an HPC configured in this way is distinguishable
from the prior art machines and methods, in which each node
operated essentially in isolation from the other nodes. An
HPC configured in this way is also distinguishable from a
hypothetical machine having all the available cores and
memory in one node (i.e., a partition configured as one giant
node), since such a hypothetical machine must have a single
instance of software capable of operating the number of
threads required at all phases. Here, note that the size of a
matrix on which PLASMA can operate is limited, such that a
single instance of PLASMA would not be capable of operat-
ing such a hypothetical machine for a large matrix (i.e., a
matrix exceeding PLASMA’s limits).

With the configuration of the system established as
described above, the instances of the band reduction software
operate on (e.g., perform matrix operations on) the sub-ma-
trices (e.g., tiles) to reduce the square matrix to band form
(step 1210D), as described above. When the matrix opera-
tions are complete, the method stores the band matrix in the
memory.

At step 1210E, the process terminates the instances of the
software (the Phase 1 Instances) described above. Generally,
for the phases described in process 1200, termination of the
processes permits the software for subsequent phases to be
instantiated with the number of threads determined for each
such phase.

Phase 2: Reduce the Band Matrix to Tridiagonal Form

The second phase (“Phase 2”) of the process (e.g., 420 of
FIG. 4) begins at step 1220A, to reduce the band matrix to
tridiagonal form.

At step 1220A, the method establishes the configuration of
the partition for Phase 2, by allocating several cores from
among the cores in the partition for executing tridiagonal
reduction software. The selected cores may be all of the cores
in the partition, or a subset of those cores, depending for
example on the number of Phase 2 threads. For example, a
configuration for Phase 2 may use only cores 1, 5 and 8 of
each node, as schematically illustrated by shaded cores in
FIG. 17(B). Cores not used (i.e., not allocated to process data)
in this phase are shown as un-shaded rectangles.

Then, at step 1220B, the method instantiates instances of
tridiagonal reduction software on each node, so that one core
on the node (e.g., core 1401) executes a “master” instance of
the software, and other allocated cores on the node (e.g., core
1405 and core 1408) execute a “slave” instance of the soft-
ware. Collectively, the master instances and the slave

10

15

20

25

30

35

40

45

50

55

60

65

20

instances of the software may be referred to as the “Phase 2
Instances.” Each core on each node may have access to the
partition memory, such that each node runs in SMP mode.

At step 1220C, each thread may optionally be affixed to a
corresponding one of the cores (e.g., in this example, cores
1401, 1405 and 1408 of each node). In other words, each
thread remains pinned to its corresponding core, such that the
thread will not be transferred (e.g., by the operating system)
to another core or other node. However, the matrix operations
in Phase 2 are not as computationally demanding as in at least
some of the other phases, and so affixing the threads to cor-
responding cores is optional. In fact, each thread may also
optionally be affixed to a corresponding one of the cores in
Phase 3 and Phase 4, the process for which are described
below.

With the configuration of the system established as
described above for Phase 2, the instances of the software
perform matrix operations on the banded matrix to reduce the
banded matrix to tridiagonal form (step 1220D), as described
above. When the matrix operations are complete, the method
stores the tridiagonal form matrix in the partition memory.

At step 1220E, the process terminates the instances of the
software (the Phase 2 Instances) described above.

Phase 3: Determine Figenvectors and Figenvalues of the
Tridiagonal Matrix

The third phase (“Phase 3”) of the process (e.g., 430 of
FIG. 4) begins at step 1230A, to determine eigenvectors and
eigenvalues of the tridiagonal matrix.

At step 1230A, the method establishes the configuration of
the partition for Phase 3, by allocating cores from among the
cores in the partition for use in processing the Phase 3 threads.
The selected cores may be all of the cores in the partition, or
a subset of those cores, depending on the number of Phase 3
threads to be processes. For example a configuration for
Phase 3 may use only cores 1, 5 and 8 of each node, as
schematically illustrated by shaded cores in FIG. 17(B).
Cores not used (i.e., not allocated to process data) in this
phase are shown as un-shaded rectangles.

Then, at step 1230B, the method instantiates instances of
tridiagonal eigensolution software on each node, so that one
core on the node (e.g., core 1401) executes a “master”
instance of the software, and other allocated cores on the node
(e.g., core 1405 and core 1408) each execute a “slave”
instance of the software. Collectively, the master instances
and the slave instances of the software may be referred to as
the “Phase 3 Instances.” Each core on each node has access to
the partition memory. Each node therefore runs in SMP mode.

At step 1230C, each thread may optionally be affixed to a
corresponding one of the cores (e.g., in this example, cores
1401, 1405 and 1408 of each node). In other words, each
thread remains pinned to its corresponding core, such that the
thread will not be transferred (e.g., by the operating system)
to another core or other node.

With the configuration of the system established as
described above for Phase 3, the instances of the software
perform matrix operations on the tridiagonal matrix to deter-
mine eigenvectors and eigenvalues of the tridiagonal matrix
(step 1230D), as described above. When the matrix opera-
tions are complete, the method stores the eigenvectors and
eigenvalues in the partition memory.

At step 1230E, the process terminates the instances of the
software (the Phase 3 Instances) described above.

By then end of Phase 3, the method has found the eigen-
values of the tridiagonal matrix, which are the same as the
eigenvalues of the square matrix, and has also found the
eigenvectors of the tridiagonal matrix. However, the eigen-
vectors of the tridiagonal matrix are expressed with reference

US 9,262,799 B2

21

to the tridiagonal matrix. In order to express the eigenvectors
of'the tridiagonal matrix with reference to the original square
matrix with which the process started, the process proceeds to
Phase 4 and Phase 5 (e.g., 440 and 450 in FIG. 4).

Phase 4: Transform Eigenvectors to the Banded Reference
System

The fourth phase (“Phase 4”) of the process (e.g., 440 of
FIG. 4) begins at step 1240A, to transform eigenvectors to the
banded reference system.

At step 1240A, the method establishes the configuration of
the partition for Phase 4, by allocating cores from among the
cores in the partition for use in processing the Phase 4 threads.
The selected cores may be all of the cores in the partition, or
a subset of those cores, for example depending on the number
of Phase 4 threads. For example a configuration for Phase 4
may use only cores 1, 5 and 8 of each node, as schematically
illustrated by shaded cores in FIG. 17(B). Cores not used (i.e.,
not allocated to process data) in this phase are shown as
un-shaded rectangles.

Then, at step 1240B, the method instantiates instances of
band backtransform software on each node, so that one core
on the node (e.g., core 1401) executes a “master” instance of
the software, and other allocated cores on the node (e.g., core
1405 and core 1408) each execute a “slave” instance of the
software. Collectively, the master instances and the slave
instances of the software may be referred to as the “Phase 4
Instances.” Each core on each node has access to the partition
memory. Each node therefore runs in SMP mode.

At step 1240C, each thread may optionally be affixed to a
corresponding one of the cores (e.g., in this example, cores
1401, 1405 and 1408 of each node). In other words, each
thread remains pinned to its corresponding core, such that the
thread will not be transferred (e.g., by the operating system)
to another core or other node.

With the configuration of the system established as
described above for Phase 4, the instances of the software
perform matrix operations on the eigenvectors of the tridiago-
nal matrix to transform those eigenvectors to eigenvectors of
(i.e., expressed with reference to) the band matrix (step
1240D), as described above. When the matrix operations are
complete, the method stores the eigenvectors of the band
matrix in the partition memory.

At step 1240FE, the process terminates the instances of the
software (the Phase 4 Instances) described above.

Phase 5: Transform Eigenvectors to the Dense Reference
System

The fifth phase (“Phase 5) of the process (e.g., 450 of FIG.
4) begins at step 1250A, to transform eigenvectors of the band
matrix to eigenvectors of the square matrix.

At step 1250A, the method establishes the configuration of
the partition for Phase 5, allocating cores from among the
cores in the partition for use in processing the Phase 5 threads.
The selected cores may be all of the cores in the partition, or
a subset of those cores, depending on the number of Phase 5
threads. For example a configuration for Phase 5 may use
cores 1-10 of each node, as schematically illustrated by
shaded cores in FIG. 17(C).

Then, at step 1250B, the method instantiates instances
dense backtransform software on each node, so that one core
on the node (e.g., core 1401) executes a “master” instance of
the software, and other allocated cores on the node (e.g.,
cored 1402 and core 1410) each execute a “slave” instance of
the software. Collectively, the master instances and the slave
instances of the software may be referred to as the “Phase 5
Instances.” Each core on each node has access to the partition
memory. Each node therefore runs in SMP mode.

20

25

35

40

45

50

55

22

At step 1250C, each thread is affixed to a corresponding
one of the cores (e.g., in this example, cores 1401-1410 of
each node). In other words, each thread remains pinned to its
corresponding core, such that the thread will not be trans-
ferred (e.g., by the operating system) to another core or other
node.

With the configuration of the system established as
described above for Phase 5, the instances of the software
perform matrix operations on the band matrix eigenvectors to
transform the band matrix eigenvectors to the eigenvectors of
(i.e., expressed with reference to) the original square matrix
(step 1250D), as described above. When the matrix opera-
tions are complete, the method stores the transformed eigen-
vectors in the partition memory.

At step 1250E, the process terminates the instances of the
software (the Phase 5 Instances) described above.

A system 1800 for computing eigenvectors and eigenval-
ues of a square matrix is schematically illustrated in FIG. 18,
and includes modules 1801-1810 for performing the func-
tions of method 1200.

Generally, the system 1800 includes modules for perform-
ing the steps of the method 1200. Such a system 1800 may be
formed, in whole or in part, from an HPC system as described
above.

As schematically illustrated in FIG. 18, the system 1800
includes a user interface 1811, configured to receive input
from a user. Such input may include, for example, specifica-
tion of the number of threads for each phase, input of a matrix
for which eigenvectors are to be found, and commands to
control the computer, to name but a few examples. The user
interface 1801 may be a remote computer 240, for example.

The system 1800 also includes a partition module config-
ured to define a partition of an HPC.

The system 1800 also includes a node allocation module
1802 configured to define a plurality of nodes from the cores
of a partition.

The system 1800 also includes a segmentation module
1803 configured to segment a square matrix into a plurality of
tiles. The segmentation module may include computer hard-
ware of an HPC, controlled by software.

The system 1800 also includes a memory module 1804
configured to store the plurality of tiles and the input and
output data to/from each phase of the process (e.g., phases
410-450).

The system 1800 also includes a node configuration mod-
ule 1805, configured to establish a configuration for each
node, for example based on the threads to be executed on each
such node.

The system 1800 also includes a band reduction module
1806 configured to reduce the square matrix to a band matrix
by operating on the tiles.

The system 1800 also includes a tridiagonal module 1807
configured to transform the band matrix to a tridiagonal
matrix.

The system 1800 also includes tridiagonal eigensolution
module 1808 to determine the eigensolutions of the tridiago-
nal matrix.

The system 1800 also includes a band eigenvector module
1809 configured to transform the eigenvectors of the tridiago-
nal matrix to eigenvectors of the band matrix (i.e., express the
eigenvectors of the tridiagonal matrix with reference to the
band matrix system).

The system 1800 also includes a dense eigenvector module
configured to transform the eigenvectors of the band matrix to
eigenvectors of the square matrix (i.e., express the eigenvec-
tors of the band matrix with reference to the square matrix
system).

US 9,262,799 B2

23

The present invention may be embodied in many different
forms, including, but in no way limited to, computer program
logic for use with a processor (e.g., a microprocessor, micro-
controller, digital signal processor, or general purpose com-
puter), programmable logic for use with a programmable
logic device (e.g., a Field Programmable Gate Array (FPGA)
orother PLD), discrete components, integrated circuitry (e.g.,
an Application Specific Integrated Circuit (ASIC)), or any
other means including any combination thereof.

Computer program logic implementing all or part of the
functionality previously described herein may be embodied
in various forms, including, but in no way limited to, a source
code form, a computer executable form, and various interme-
diate forms (e.g., forms generated by an assembler, compiler,
linker, or locator). Source code may include a series of com-
puter program instructions implemented in any of various
programming languages (e.g., an object code, an assembly
language, or a high-level language such as Fortran, C, C++,
JAVA, or HTML) for use with various operating systems or
operating environments. The source code may define and use
various data structures and communication messages. The
source code may be in a computer executable form (e.g., via
an interpreter), or the source code may be converted (e.g., via
a translator, assembler, or compiler) into a computer execut-
able form.

The computer program may be fixed in any form (e.g.,
source code form, computer executable form, or an interme-
diate form) either permanently or transitorily in a tangible
storage medium, such as a semiconductor memory device
(e.g., a RAM, ROM, PROM, EEPROM, or Flash-Program-
mable RAM), a magnetic memory device (e.g., a diskette or
fixed disk), an optical memory device (e.g.,a CD-ROM), aPC
card (e.g., PCMCIA card), or other memory device. The
computer program may be fixed in any form in a signal that is
transmittable to a computer using any of various communi-
cation technologies, including, but in no way limited to, ana-
log technologies, digital technologies, optical technologies,
wireless technologies (e.g., Bluetooth), networking technolo-
gies, and internetworking technologies. The computer pro-
gram may be distributed in any form as a removable storage
medium with accompanying printed or electronic documen-
tation (e.g., shrink wrapped software), preloaded with a com-
puter system (e.g., on system ROM or fixed disk), or distrib-
uted from a server or electronic bulletin board over the
communication system (e.g., the Internet or World Wide
Web).

Hardware logic (including programmable logic for use
with a programmable logic device) implementing all or part
of the functionality previously described herein may be
designed using traditional manual methods, or may be
designed, captured, simulated, or documented electronically
using various tools, such as Computer Aided Design (CAD),
ahardware description language (e.g., VHDL or AHDL), or a
PLD programming language (e.g., PALASM, ABEL, or
CUPL).

Programmable logic may be fixed either permanently or
transitorily in a tangible storage medium, such as a semicon-
ductor memory device (e.g., a RAM, ROM, PROM,
EEPROM, or Flash-Programmable RAM), a magnetic
memory device (e.g., a diskette or fixed disk), an optical
memory device (e.g., a CD-ROM), or other memory device.
The programmable logic may be fixed in a signal that is
transmittable to a computer using any of various communi-
cation technologies, including, but in no way limited to, ana-
log technologies, digital technologies, optical technologies,
wireless technologies (e.g., Bluetooth), networking technolo-
gies, and internetworking technologies. The programmable

10

—

5

20

25

30

35

40

45

50

55

60

65

24

logic may be distributed as a removable storage medium with
accompanying printed or electronic documentation (e.g.,
shrink wrapped software), preloaded with a computer system
(e.g., on system ROM or fixed disk), or distributed from a
server or electronic bulletin board over the communication
system (e.g., the Internet or World Wide Web).

What is claimed is:

1. A computerized method for computing eigenpairs of a
large square matrix in a high performance computing (HPC)
system having a plurality of nodes, each node including one
or more processing cores for executing program threads, the
nodes having non-uniform memory access, the method com-
prising:

allocating the computing resources of the high perfor-

mance computing system into a plurality of partitions,
each partition comprising memory and a plurality of
computer processor cores;
allocating the computing resources of the one of the plu-
rality of partitions into a plurality of partition nodes,
each partition node comprising associated node memory
and a plurality of the computer processor cores;

segmenting the large square matrix of data into a plurality
of digestible sub-matrices;

storing the plurality of sub-matrices in a partition memory,

which partition memory is accessible by each node, such
that all of the sub-matrices are accessible by each of the
nodes, the partition memory comprising the plurality of
node memories;

in a first phase, reducing the square matrix to band form by:

instantiating an instance of band reduction software on
one of the plurality of partition nodes, the band reduc-
tion software employing a user-specified first number
of threads for executing first phase matrix operations
on the sub-matrices;

instantiating additional instances of band reduction soft-
ware on additional partition nodes;

dedicating, within each of'the partition nodes, one of the
plurality of cores to a corresponding one of the plu-
rality of threads;

creating a band matrix from the square matrix by per-
forming matrix operations on the sub-matrices using
the band reduction software, each of the threads
accessing the sub-matrices from the partition
memory, such that each node executes its correspond-
ing instance of the computer software in an SMP
mode;

storing the band matrix in band-matrix segments in the
partition memory; and

terminating the instances of the band reduction soft-
ware;

in a second phase, reducing the band matrix to tridiagonal

form by:

instantiating an instance of tridiagonal reduction soft-
ware on one of the plurality of nodes, the tridiagonal
reduction software employing a second number of
user-specified second phase threads for executing
second phase matrix operations on the band matrix;

creating a tridiagonal matrix by performing matrix
operations on the band-matrix using the tridiagonal
reduction software, each of the second phase threads
accessing the band-matrix from the partition
memory;

storing the tridiagonal matrix in the partition memory;
and

terminating the instances of tridiagonal reduction soft-
ware;

US 9,262,799 B2

25

in a third phase, computing eigenvectors and eigenvalues

of the tridiagonal matrix by:

instantiating an instance of tridiagonal eigensolution
software on a partition node, the tridiagonal eigenso-
lution software employing a third number of user-
specified third phase threads for executing third phase
matrix operations on the tridiagonal matrix;

determining the eigenvectors and eigenvalues of the
tridiagonal matrix by performing matrix operations
on the tridiagonal matrix using the tridiagonal eigen-
solution software;

storing the eigenvectors and eigenvalues of the tridiago-
nal matrix in the partition memory; and

terminating the instances of the tridiagonal eigensolu-
tion software;

determining the eigenpairs of the square matrix by
in a fourth phase, transforming the eigenvectors of the

tridiagonal matrix to eigenvectors of the band matrix by:

instantiating an instance of band backtransform soft-
ware on one of the plurality of partition nodes, the
band backtransform software employing a fourth
number of user-specified fourth phase threads for
executing fourth phase matrix operations on the
eigenvectors of the tridiagonal matrix;

transforming the eigenvectors of the tridiagonal matrix
to eigenvectors of the band matrix by performing
matrix operations on the eigenvectors of the tridiago-
nal matrix using the band backtransform software;

storing the eigenvectors of the band matrix in the parti-
tion memory; and

terminating the instances of the band backtransform
software;

in a fifth phase, transforming the eigenvectors of the band

matrix to eigenvectors of the square matrix by:

instantiating an instance of dense backtransform soft-
ware on one of the partition nodes, the dense back-
transform software employing a fifth number of user-
specified fifth phase threads for executing fifth phase
matrix operations on the eigenvectors of the band
matrix;

instantiating additional instances of the dense back-
transform software on the partition nodes;

dedicating, within each of partition nodes, one of the
plurality of cores to a corresponding one of the plu-
rality of fifth phase threads;

transforming eigenvectors of the band matrix to eigen-
vectors of a square matrix by performing matrix
operations on the eigenvectors of the band matrix
using the dense backtransform software, each of the
fifth phase threads accessing the eigenvectors of the
band matrix from the partition memory, such that each
node executes its corresponding instance of the dense
backtransform software in an SMP mode; and

storing the eigenvectors of the square matrix in the par-
tition memory.

2. The computerized method for computing eigenpairs of a
large square matrix of claim 1, wherein storing the plurality of
sub-matrices in a partition comprises storing the plurality of
sub-matrices in an interleaved configuration.

3. The computerized method for computing eigenpairs of a
large square matrix of claim 1, wherein the band reduction
software comprises PLASMA.

4. The computerized method for computing eigenpairs of a
large square matrix of claim 1, wherein the tridiagonal eigen-
solution software comprises the MR3SMP package.

5. A computer-based system for computing eigenpairs of a
large square matrix, comprising:

15

20

25

30

35

40

45

55

26

a user interface configured to receive input from a user;

a segmentation module configured to segment a square

matrix into a plurality of tiles;

a memory module configured to store the plurality of'tiles;

anode configuration module configured to allocate cores to

threads, to allocate the cores into a plurality of configu-
rations corresponding to a plurality of phases of a pro-
cess for computing the eigenvectors, the plurality of
configurations comprising:

aband reduction module configured to reduce the square
matrix to a band matrix by operating on the tiles;

a tridiagonal module configured to transform the band
matrix to a tridiagonal matrix;

a tridiagonal eigenpair module configured to determine
eigenpairs of the tridiagonal matrix;

a band eigenvector module configured to transform the
eigenvectors of the tridiagonal matrix to eigenvectors
of the band matrix; and

a dense eigenvector module configured to transform the
eigenvectors of the band matrix to eigenvectors of the
square matrix.

6. The system for computing eigenpairs of a large square
matrix of claim 5, wherein the user interface comprises a
computer monitor.

7. The system for computing eigenpairs of a large square
matrix of claim 5, wherein each node comprises node
memory, and the memory module comprises the node memo-
ries.

8. The system for computing eigenpairs of a large square
matrix of claim 7, wherein the memory module comprises
interleaved memory.

9. A non-transient computer readable medium storing
executable code configured to execute on an HPC, the code
comprising code for causing the HPC to:

allocate the computing resources of the high performance

computing system into a plurality of partitions, each

partition comprising memory and a plurality of com-
puter processor cores;

allocate the computing resources of the one of the plurality

of partitions into a plurality of partition nodes, each

partition node comprising associated node memory and

a plurality of the computer processor cores;

segment the large square matrix of data into a plurality of

digestible sub-matrices;

store the plurality of sub-matrices in a partition memory,

which partition memory is accessible by each node, such

that all of the sub-matrices are accessible by each of the
nodes, the partition memory comprising the plurality of
node memories;

in a first phase, reducing the square matrix to band form by:

instantiating an instance of band reduction software on
one of the plurality of partition nodes, the band reduc-
tion software employing a user-specified first number
of threads for executing first phase matrix operations
on the sub-matrices;

instantiating additional instances of band reduction soft-
ware on additional partition nodes;

dedicating, within each of'the partition nodes, one of the
plurality of cores to a corresponding one of the plu-
rality of threads;

creating a band matrix from the square matrix by per-
forming matrix operations on the sub-matrices using
the band reduction software, each of the threads
accessing the sub-matrices from the partition
memory, such that each node executes its correspond-
ing instance of the computer software in an SMP
mode;

US 9,262,799 B2

27

storing the band matrix in band-matrix segments in the
partition memory; and
terminating the instances of the band reduction soft-
ware;
in a second phase, reducing the band matrix to tridiagonal
form by:
instantiating an instance of tridiagonal reduction soft-
ware on one of the plurality of nodes, the tridiagonal
reduction software employing a second number of
user-specified second phase threads for executing
second phase matrix operations on the band matrix;
creating a tridiagonal matrix by performing matrix
operations on the band-matrix using the tridiagonal
reduction software, each of the second phase threads
accessing the band-matrix from the partition
memory;
storing the tridiagonal matrix in the partition memory;
and
terminating the instances of tridiagonal reduction soft-
ware;
in a third phase, computing eigenvectors and eigenvalues
of the tridiagonal matrix by:
instantiating an instance of tridiagonal eigensolution
software on a partition node, the tridiagonal eigenso-
lution software employing a third number of user-
specified third phase threads for executing third phase
matrix operations on the tridiagonal matrix;
determining the eigenvectors and eigenvalues of the
tridiagonal matrix by performing matrix operations
on the tridiagonal matrix using the tridiagonal eigen-
solution software;
storing the eigenvectors and eigenvalues of the tridiago-
nal matrix in the partition memory; and
terminating the instances of the tridiagonal eigensolu-
tion software;
determining the eigenpairs of the square matrix by
in a fourth phase, transforming the eigenvectors of the
tridiagonal matrix to eigenvectors of the band matrix by:
instantiating an instance of band backtransform soft-
ware on one of the plurality of partition nodes, the
band backtransform software employing a fourth

15

20

35

40

28

number of user-specified fourth phase threads for
executing fourth phase matrix operations on the
eigenvectors and eigenvalues of the tridiagonal
matrix;

transforming the eigenvectors of the tridiagonal matrix
to eigenvectors of the band matrix by performing
matrix operations on the eigenvectors of the tridiago-
nal matrix using the band backtransform software;

storing the eigenvectors of the band matrix in the parti-
tion memory; and

terminating the instances of the band backtransform
software;

in a fifth phase, transforming the eigenvectors of the band
matrix to eigenvectors of the square matrix by:

instantiating an instance of dense backtransform soft-
ware on one of the partition nodes, the dense back-
transform software employing a fifth number of user-
specified fifth phase threads for executing fifth phase
matrix operations on the eigenvectors of the band
matrix;

instantiating additional instances of the dense back-
transform software on the partition nodes;

dedicating, within each of partition nodes, one of the
plurality of cores to a corresponding one of the plu-
rality of fifth phase threads;

transforming eigenvectors of the band matrix to eigen-
vectors of a square matrix by performing matrix
operations on the eigenvectors of the band matrix
using the dense backtransform software, each of the
fifth phase threads accessing the eigenvectors of the
band matrix from the partition memory, such that each
node executes its corresponding instance of the dense
backtransform software in an SMP mode;

storing the eigenvectors of the square matrix in the par-
tition memory; and

terminating the instances of the dense backtransform
software.

